Window parity games: an alternative approach toward parity games with time bounds
نویسندگان
چکیده
Classical objectives in two-player zero-sum games played on graphs often deal with limit behaviors of infinite plays: e.g., mean-payoff and total-payoff in the quantitative setting, or parity in the qualitative one (a canonical way to encode ω-regular properties). Those objectives offer powerful abstraction mechanisms and often yield nice properties such as memoryless determinacy. However, their very nature provides no guarantee on time bounds within which something good can be witnessed. In this work, we consider two approaches toward inclusion of time bounds in parity games. The first one, parity-response games, is based on the notion of finitary parity games [8] and parity games with costs [16, 29]. The second one, window parity games, is inspired by window meanpayoff games [5]. We compare the two approaches and show that while they prove to be equivalent in some contexts, window parity games offer a more tractable alternative when the time bound is given as a parameter (P-c. vs. PSPACE-c.). In particular, it provides a conservative approximation of parity games computable in polynomial time. Furthermore, we extend both approaches to the multi-dimension setting. We give the full picture for both types of games with regard to complexity and memory bounds.
منابع مشابه
Window Parity Games: An Alternative Approach Toward Parity Games with Time Bounds (Full Version)
Classical objectives in two-player zero-sum games played on graphs often deal with limit behaviors of infinite plays: e.g., mean-payoff and total-payoff in the quantitative setting, or parity in the qualitative one (a canonical way to encode ω-regular properties). Those objectives offer powerful abstraction mechanisms and often yield nice properties such as memoryless determinacy. However, thei...
متن کاملExtending Finite Memory Determinacy to Multiplayer Games
We provide several techniques to extend finite memory determinacy from some restricted class of games played on a finite graph to a larger class. As a particular example, we study energy parity games. First we show that under some general conditions the finite memory determinacy of a class of two-player win/lose games played on finite graphs implies the existence of a Nash equilibrium built fro...
متن کاملSimple Stochastic Games, Parity Games, Mean Payoff Games and Discounted Payoff Games Are All LP-Type Problems1
We show that a Simple Stochastic Game (SSG) can be formulated as an LP-type problem. Using this formulation, and the known algorithm of Sharir and Welzl [SW] for LP-type problems, we obtain the first strongly subexponential solution for SSGs (a strongly subexponential algorithm has only been known for binary SSGs [L]). Using known reductions between various games, we achieve the first strongly ...
متن کاملTrading Probability for Fairness
Behavioral properties of open systems can be formalized as objectives in two-player games. Turn-based games model asynchronous interaction between the players (the system and its environment) by interleaving their moves. Concurrent games model synchronous interaction: the players always move simultaneously. Infinitary winning criteria are considered: Büchi, co-Büchi, and more general parity con...
متن کاملPreprocessing parity games with partial Gauss elimination
We investigate the use of partial Gauss elimination as a preprocessing step to parity game solving. Gauss elimination is a well-known technique for solving Boolean equation systems. We present an Θ(V ) time algorithm for exhaustive partial Gauss elimination on parity games. Experimental validation shows that this approach is probably not feasible for speeding up the solving of real-world parity...
متن کامل